360 research outputs found

    In vitro platelet adhesion on polymeric surfaces with varying fluxes of continuous nitric oxide release

    Full text link
    Nitric oxide (NO) is released by endothelial cells that line the inner walls of healthy blood vessels at fluxes ranging from 0.5 × 10 −10 to 4.0 × 10 −10 mol cm −2 min −1 , and this continuous NO release contributes to the extraordinary thromboresistance of the intact endothelium. To improve the biocompatibility of blood-contacting devices, a biomimetic approach to release/generate NO at polymer/blood interfaces has been pursued recently (with NO donors or NO generating catalysts doped within polymeric coatings) and this concept has been shown to be effective in preventing platelet adhesion/activation via several in vivo animal studies. However, there are no reports to date describing any quantitative in vitro assay to evaluate the blood compatibilities of such NO release/generating polymers with controlled NO fluxes. Such a methodology is desired to provide a preliminary assessment of any new NO-releasing material, in terms of the effectiveness of given NO fluxes and NO donor amounts on platelet activity before the more complex and costly in vivo testing is carried out. In this article, we report the use of a lactate dehydrogenase assay to study in vitro platelet adhesion on such NO-releasing polymer surfaces with varying NO fluxes. Reduced platelet adhesion was found to correlate with increasing NO fluxes. The highest NO flux tested, 7.05 (±0.25) × 10 −10 mol cm −2 min −1 , effectively reduced platelet adhesion to nearly 20% of its original level (from 14.0 (±2.1) × 10 5 cells cm −2 to 2.96 (±0.18) × 10 5 cells cm −2 ) compared to the control polymer coating without NO release capability. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56095/1/31105_ftp.pd

    YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications

    Full text link
    For years, the YOLO series has been the de facto industry-level standard for efficient object detection. The YOLO community has prospered overwhelmingly to enrich its use in a multitude of hardware platforms and abundant scenarios. In this technical report, we strive to push its limits to the next level, stepping forward with an unwavering mindset for industry application. Considering the diverse requirements for speed and accuracy in the real environment, we extensively examine the up-to-date object detection advancements either from industry or academia. Specifically, we heavily assimilate ideas from recent network design, training strategies, testing techniques, quantization, and optimization methods. On top of this, we integrate our thoughts and practice to build a suite of deployment-ready networks at various scales to accommodate diversified use cases. With the generous permission of YOLO authors, we name it YOLOv6. We also express our warm welcome to users and contributors for further enhancement. For a glimpse of performance, our YOLOv6-N hits 35.9% AP on the COCO dataset at a throughput of 1234 FPS on an NVIDIA Tesla T4 GPU. YOLOv6-S strikes 43.5% AP at 495 FPS, outperforming other mainstream detectors at the same scale~(YOLOv5-S, YOLOX-S, and PPYOLOE-S). Our quantized version of YOLOv6-S even brings a new state-of-the-art 43.3% AP at 869 FPS. Furthermore, YOLOv6-M/L also achieves better accuracy performance (i.e., 49.5%/52.3%) than other detectors with a similar inference speed. We carefully conducted experiments to validate the effectiveness of each component. Our code is made available at https://github.com/meituan/YOLOv6.Comment: technical repor

    SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny

    Get PDF
    SUPERFAMILY provides structural, functional and evolutionary information for proteins from all completely sequenced genomes, and large sequence collections such as UniProt. Protein domain assignments for over 900 genomes are included in the database, which can be accessed at http://supfam.org/. Hidden Markov models based on Structural Classification of Proteins (SCOP) domain definitions at the superfamily level are used to provide structural annotation. We recently produced a new model library based on SCOP 1.73. Family level assignments are also available. From the web site users can submit sequences for SCOP domain classification; search for keywords such as superfamilies, families, organism names, models and sequence identifiers; find over- and underrepresented families or superfamilies within a genome relative to other genomes or groups of genomes; compare domain architectures across selections of genomes and finally build multiple sequence alignments between Protein Data Bank (PDB), genomic and custom sequences. Recent extensions to the database include InterPro abstracts and Gene Ontology terms for superfamiles, taxonomic visualization of the distribution of families across the tree of life, searches for functionally similar domain architectures and phylogenetic trees. The database, models and associated scripts are available for download from the ftp site

    Probabilistic policies in re-entrant queueing systems with a product-form steady-state distribution

    Full text link
    Thesis (Ph.D.)--Boston UniversityPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at [email protected]. Thank you.This dissertation presents several new scheduling policies based on real-time information and probabilistic controls for re-entrant (non-acyclic) Markovian queueing systems. One interpretation of the results contained in this dissertation is that they provide a generalization of the results for Jackson networks to re-entrant systems with buffer-dependent routing and non-identical service-time distributions at the machines. This introduces a machine scheduling component that is analogous to going from a 2-D to a 3-D point-of-view. These policies require minimal computational effort, often achieve solid performance, and are scalable to systems with an arbitrary number of machines and buffers. Most importantly, under these scheduling policies, the steady-state buffer-level probability distribution may he determined analytically for a wide variety of Markovian queueing system architectures, including open, closed, or mixed re-entrant systems, systems with deterministic or probabilistic routing, multi-class systems, and systems with parallel servers. Using the product-form buffer-level probability distribution, and modifying standard algorithms for Jackson networks, it is straightforward to evaluate the steady-state performance of these policies, for arbitrarily large re-entrant systems. Thus, the results contained in this dissertation provide the first scalable benchmark for such systems. It is anticipated that the methods and results used in this dissertation will provide a foundation for considerable further research in this area.2031-01-0

    Changes in Serum Concentrations of Bone Turnover Markers in Healthy Pregnant Women

    No full text
    Background. Changes in bone metabolism during pregnancy have not received sufficient attention because of the lack of effective screening tools. Bone turnover markers (BTMs) could reflect the changes of bone metabolism. Currently, reference intervals for bone metabolism during normal pregnancy are inconclusive. This study aimed to determine reference intervals for BTMs in pregnant women taking prenatal care and to facilitate clinical research on diseases affecting bone metabolism during pregnancy. Methods. We surveyed 120 low-risk pregnant women attending routine antenatal care from January 2020 to March 2020. The serum levels of procollagen type I N-propeptide (PINP), N-terminal osteocalcin (N-MID), and C-terminal telopeptide of type I collagen (β-CTX) were measured in the first trimester (28 weeks). Reference intervals for BTMs during pregnancy were analyzed. The Kruskal–Wallis test and paired t-test are used to analyze differences between groups. Spearman correlation coefficients expressed the measure of linear association. Results. The bone resorption marker β-CTX in third trimester increases compared to the first trimester and the second trimester (P < 0.001, P < 0.001). The bone formation markers PINP and N-MID were decreased from the first trimester to the second trimester (P = 0.01, P < 0.001) and then raised from the second trimester to the third trimester (P < 0.001, P < 0.001). Two indices of bone turnover rate, β-CTX/PINP and β-CTX/N-MID, were increased from the first trimester to the second trimester (P < 0.001, P < 0.001) and then decreased from the second trimester to the third trimester (P = 0.02, P < 0.001). Conclusion. This study established reference intervals for BTMs in pregnant women and observed the changes in BTMs during the different trimesters of pregnancy. The present findings can help in clinical monitoring of the effects of pregnancy diseases on the bone metabolism of pregnant women

    Association of short-term blood pressure variability with cardiovascular mortality among incident hemodialysis patients

    No full text
    Objective: To investigate the association of short-term blood pressure variability (BPV) with cardiovascular mortality in hemodialysis (HD) patients, using a reliable index called average real variability (ARV), and to assess the factors associated with ARV in incident HD population. Methods: A total of 103 HD patients were recruited, with 44-h ambulatory blood pressure monitoring performed after the midweek HD session. Systolic BPV was assessed by SD, coefficient of variation (CV), and ARV, respectively. Laboratory data were obtained from blood samples before the midweek HD. All patients were followed up for 24 months. Results: According to the median of BPV indices, the comparisons between patients with the low and high values were conducted. Kaplan–Meier analysis showed the survival curves corresponding to median of SD and CV exhibit similar performance for the low and high groups (p = .647, p = .098, respectively). In contrast, patients with higher ARV had a lower survival rate than those with lower ARV (77.8% vs. 98.0%, p = .002). After adjustment for demographics and clinical factors, ARV (HR: 1.143; 95% CI: 1.022–1.279, p = .019) and high-sensitivity C-reactive protein (HR: 1.394; 95% CI: 1.025–1.363, p = .021) were associated with increased risk of cardiovascular mortality in HD patients. Age and interdialytic weight gain (IDWG) were related factors for ARV (β = 0.065, p = .005; β = 0.825, p = .003, respectively). Conclusions: Greater ARV was independently associated with increased risk of cardiovascular mortality in HD patients. Age and IDWG were independent related factors for ARV

    Recombinant ArgF PLGA nanoparticles enhances BCG induced immune responses against Mycobacterium bovis infection

    No full text
    Mycobacterium bovis (M. bovis) is a member of mycobacterium tuberculosis complex (MTBC), and a causative agent of chronic respiratory disease in a wide range of hosts. Bacillus Calmette-Guerin (BCG) vaccine is mostly used for the prevention of childhood tuberculosis. Further substantial implications are required for the development and evaluation of new tuberculosis (TB) vaccines as well as improving the role of BCG in TB control strategies. In this study, we prepared PLGA nanoparticles encapsulated with argF antigen (argF-NPs). We hypothesized, that argF nanoparticles mediate immune responses of BCG vaccine in mice models of M. bovis infection. We observed that mice vaccinated with argF-NPs exhibited a significant increase in secretory IFN-γ, CD4+ T cells response and mucosal secretory IgA against M. bovis infection. In addition, a marked increase was observed in the level of secretory IL-1β, TNF-α and IL-10 both in vitro and in vivo upon argF-NPs vaccination. Furthermore, argF-NPs vaccination resulted in a significant reduction in the inflammatory lesions in the lung’s tissues, minimized the losses in total body weight and reduced M. bovis burden in infected mice. Our results indicate that BCG prime-boost strategy might be a promising measure for the prevention against M. bovis infection by induction of CD4+ T cells responses and mucosal antibodies
    corecore